Evaluation of the Ability to Transform
SIM Application into hostile
Applications

Guillaume Bouffard, Jean-Louis Lanet, Jean-Baptiste Malchemie, Yves
Poichotte and Jean-Philippe Wary

SSD Team — Xlim/Université de Limoges
SFR, Group Fraud & Information Security Direction

b 78

guillaume.bouffard @xlim.fr

N\

‘ Université]

"" de Limoges

Outline

I. SFR Presentation

II. What i1s a Mutant application?
111. The Fault Model

1V. Counter-Measure: Path-Check
V. SmartCM

V1. Metrics

VII. Conclusion

SFR Presentation

SFR, 1st alternative operator on all telecoms market segments

SFR covert all
segments of the Consumer Enterprise Wholesale
French telecom

market

SFR addresses 21.3m mobile customers 150K enterprise customers

1 french out of 2 4.9m broadband Internet customers 200 Operators and 10 MVNOs

Leading Mobile The 1rst alternative
Broadband network Fixed Broadband infrastructure

18 000 radio sites /6% unbundled ADSL coverage
99% 2G coverage 57 000 km fiber backbone

94% 3TG coverage 3m Wifi hotspots

Group Fraud & Information Security

Missions

o Security Expertise: Security recommendation for operational and Business Units

o Anticipation & Intelligence: business intelligence, security and anti fraud knowledge as added value services

o Governance: Fraud & Security risk management

Main Objectives

Trusted Operator

* Neutrality Approach
* Privacy Protection
* Legal Compliance

Value-Added Services

* Processes Industrialization
* Innovative Methodology
 Business-oriented

Business Enabler

* Business Intelligence
» Contextual Security
* Proof of Concept

Mutant

- Definition
- A piece of code that passed the BC verification during the loading phase or any
certification or any static analysis, and has been loaded into the EEPROM area,
- This code is modified by a fault attack,

- It becomes hostile : illegal cast to parse the memory, access to other pieces of code,
unwanted call to the Java Card API (getKey,...).

- Java Virtual machine uses an offensive interpreter
- Fault attacks are not taken into account,
- Java Card Virtual Machine needs some run time checks,
+ Sometime hardware based.
- How to characterize a good counter measure ?
+ A complete defensive JCVM is not affordable,
+ Security level of the VM can be driven by the application;

Example of mutant

Bytecode Octets Java code
mee 00 : aload O 00 : 18 private void debit (APDU apdu) ({
mem 01 : getfield 85 60 01 : 83 85 60
wmes 04 : invokevirtual 81 00 04 : 8B 81 00
wee 07 : ifeq 59 07 : 60 3B if (pin.isValidated()) {
mee 09 @ 09 : .. // make the debit operation
} else {
59 : goto 66 59 : 70 42 ISOException. throwIt (
61 : sipush 25345 61 : 13 63 01
64 : invokestatic 6C 00 64 : 8D 6C 00 SW_PIN VERIFICATION REQUIRED) ;
67 : return 67 : T7A }
Stack
ref ref ref ref 0-1 0-1
aload 0 getfield #4 invokevirtual #18 ifeq 59 09:

X

Example of mutant

Bytecode Octets Java code
00 : aload 0 00 : 18 private void debit (APDU apdu) {
01 : getfield #4 01 : 83 00 04
we= 04 : invokevirtual #61 04 : 8B 00 3D
wm== 07 : nop 07 : 00 if (—pin-isValidated{}—) {
me= 08 : pop 08 : 3B
m 09 : .. 09 :
//make the debit operation
59 : goto 66 59 : 70 42
61 : sipush 25345 61 : 13 63 01 e
64 : invokestatic #13 64 : 8D 00 OD ISOException. throwIt (
67 : return 67 : TA
SW_PIN VERIFICATION REQUIRED) ;
—}
Stack }
ref ref ref
aload 0 getfield #4 invokevirtual #18 09:

X

Fault models

Non-encrypted memory

A
Fault model Timing precision |location fault type Difficulty
Precise bit error total control |bit total control |set (1) or reseq: (0) +
. -)
.
Precise byte error |total control |byte total control set (UX0U), reset +
- : -
Unknown byte set (0XO¢)OI‘ reset
1 1 . -

error oose control |byte no control (OXFF) ér random
Unknown error no control variable [no control set (OX?D 0), reset =

(OxFF) or random

v

Encrypted memory

. S
Used approach

Off-card On-card
Java source Application
fi]ef*. - compilation | Processing N Uploading N Virf-{xoos
a\\o . : O - £ CO
oo annotation oS © s N\Oé\{ 1€
\ | o |
@SensitiveType {

sensitivity= SensitiveValue.INTEGRITY,
proprietaryValue=“"FoB”

}

private void debit (APDU apdu) { X
XRR
XRR
if (pin.isValidated()) { XRR

// make the debit operation

} else { e
ISOException. throwIt (XRR
SW_PIN_VERIFICATION_REQUIRED) ; XRR

} X

Nw

Embedding CM

« Control Flow Verification
- Detect control flow deviation
- Principle
 Off-card :
* Compute all the paths using a Control Flow Graph (CFG)

* Store the information in a custom component as a field of bits,

* Send it with the application to the card.
* On-card :

* Each instruction performs a control flow check if the path is a legal
one using the previously stored paths

Nw

Path Check (PCh) : example

0 3 ! 11
0 aload_O; 66 aload O; 104 return;
1 getfield 4; 37 sipush 26368; 67 getfield 20;
4 invokevirtual 18; 40 invokestatic 13; 70 iload 5;
7 ifeq 98 (+91); 72 isub;
73 i2s;
74 ifge 83 (+9);
1
4

10 aload 1; 8
11 invokevirtual 11;
14 astore 2; 43 aload 2; 77 sipush 27269;
15 aload 2; 44 iconst 5; 80 invokestatic 13;
16 iconst 4; 45 ?aload;
17 baload7 46 }store 5; °
18 istore 3; 48 1}oad 5;
19 aload I; 50 ?1pgsh 127;
20 invok;virtual 19; 52 :|.f_1cmpgt 60 (+8); 83 aload 0,.
23 ?Zb; 84 aload 0;
24 istore 4; 85 getfield 20;
26 iload 3; 5 88 iload 5;
27 iconst_1; 90 isub;
28 if icmpne 37 (+9);| |55 iload 5; 91 i2s;

57 ifge 66 (+9); 92 putfield 20;

2 95 goto 104 (+49);
6
31 iload 4;
33 iconst_1; 60 sipush 27267; 10
34 if icmpeq 43 (+9); 63 invokestatic 13;
98 sipush 25345;

101 invokestatic 13;

Path Check (PCh) : example

0 1 Path leading to node 9 computed off-card:

G @ o1 |o|l1]|1|lo0o]o]1
Q Path leading to node 9 computed on-card
1
° 0 0 1(| 1 D

X

Path Check (PCh)

- Advantage

- Allow to detect modifications that influence control flow graph and thus
to fight against bypassing crucial tests.

- Drawback

 Can’t detect a modification that doesn’t influence control flow graph .

- Evaluation of the CM
- Efficienty,

+ Tool : fault simulator
+ Metrics : Mutant reduction, Latency, Simulation time

+ Cost memory footprint and CPU overhead
+ Modification of a JC Virtual Machine

- Execution on a board

Nw

e
Design of SmartCM

- SmartCM investigates the ability of an application to become hostile on a given
smart card platform due to a laser attack,

- It defines several profiles corresponding to different

+ Models of smart card countermeasures,

+ Models of the attacker power,

* Models of underlying hardware support e.g. encrypted memory,
- It emulates the effect of the fault,

* Only on the byte array (including the exception table) of a method not on the RTE or system
variables.

+ If undetected by the CM it generates the corresponding mutant code,
+ It uses the JC 3 annotation mechanism to activate the CM,
- It evaluates the severity of each mutant code,
+ According to a risk analysis,
- It can automatically generates applicative CM if needed or guidelines for developers.

The Fault St mulator

Mutation Engine

Java Binary Code

Smart Card Model

Guidelines for JC applets

Applicative Secure Code Generation

Mutant Code

Risk Analysis

Security properties

Injected Fault

Source Code Prevention

A 4

Reports,
Highlighting
at Java level

Mutant patterns
data base

Efficiency: mutants reduction

* Path Check
** Field of bit
*** Basic block

SfrOtp - 9136 attacks on 4568 instructions

Refergnlce SfrOtp Pé‘rcﬁ\i‘l PS | PCh* | FoB** | BRB***
mode
ot r:ngt‘i“;n 94% | 95% | 86% | 99% 100%
i ‘i‘avtzzacie 3.64 356 | 17.18 8.61 12
AgentlLoc - 7008 attacks on 3504 instructions
Refergnlce AgentLoc P;gi\j‘l PS | PCh* | FoB** | BB***
modc
s Ixzﬁiﬂ;n 94% 99% | 88% 99% 100%
i ﬁ;ﬁy@ 11.8 12.1 | 243 10.20 13

Benchmark: maximum
resources consumption

* Path Check
** Field of bit
*** Basic block

CPU overhead| EEPROM Ram ROM

PS +5% 0% =~ () =~ 1%
PCh* +8% +10% <1% = 1%
FoB** +3% ~3 % <1% =~ 1%
BB*** +5% +5% <1% =~ 1%

Metrics obtained with all methods tagged

X

Conclusions

« The exposed countermeasure
- Respectful of the Java Card specification
- Brings security interoperability
- Efficiency depends on the application
- It 1s affordable for the card
- Memory consumption
- CPU overhead
- Less work for developers

+ Only need to use an annotation

- Lightweight changes of the VM interpreter

Thanks you for your attention!

Any questions?

‘)

guillaume.bouffard @ xlim.fr

http://secinfo.ms1.unilim.ir

